ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

Dynamics

1. ΓΕΝΙΚΑ

ΣΧΟΛΗ School of Engineering
ΤΜΗΜΑ Department of Industrial Engineering and Management
ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Undergraduate
ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 24 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2nd
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Dynamics
ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ
σε περίπτωση που οι πιστωτικές μονάδες απονέμονται σε διακριτά μέρη του μαθήματος π.χ. Διαλέξεις, Εργαστηριακές Ασκήσεις κ.λπ. Αν οι πιστωτικές μονάδες απονέμονται ενιαία για το σύνολο του μαθήματος αναγράψτε τις εβδομαδιαίες ώρες διδασκαλίας και το σύνολο των πιστωτικών μονάδων.
ΕΒΔΟΜΑΔΙΑΙΕΣ ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ
Theory 3 5
Exercises 1
Προσθέστε σειρές αν χρειαστεί. Η οργάνωση διδασκαλίας και οι διδακτικές μέθοδοι που χρησιμοποιούνται περιγράφονται αναλυτικά στο 4.    
ΤΥΠΟΣ ΜΑΘΗΜΑΤΟΣ
Γενικής Υποδομής (ΓΥ),Ειδικής Υποδομής (ΕΥ), Γενικών Γνώσεων (ΓΓΔ) και Επιστημονικής Περιοχής (ΔΔΤΝ, ΕΔ, ΕΥΣ, ΗΛ, ΠΑ) .
 Core
ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΜΑΘΗΜΑΤΑ:  
ΓΛΩΣΣΑ ΔΙΔΑΣΚΑΛΙΑΣ και ΕΞΕΤΑΣΕΩΝ:  Ελληνικά
ΤΟ ΜΑΘΗΜΑ ΠΡΟΣΦΕΡΕΤΑΙ ΣΕ ΦΟΙΤΗΤΕΣ ERASMUS Ναι
ΗΛΕΚΤΡΟΝΙΚΗ ΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ (URL) https://exams-sm.the.ihu.gr/enrol/index.php?id=100

2. ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ

Μαθησιακά Αποτελέσματα
Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες  γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος.

Undergraduate Programme Handbook Department of Industrial Engineering and Management, I.H.U.
37
DYNAMICS
CODE:24 SEMESTER:2 TYPE: BACKGROUND/ CORE LECTURES/EXCERSICES/LAB/ECTS: 3/ 1 / 0 / 5
WEBPAGE: http://www.vdl.teithe.gr/index.php/education/courses/dynamics, https://moodle.teithe.gr/course/view.php?id=3401
LEARNINGOUTCOMES:
This course covers the kinematics and kinetics of particles and rigid bodies in two and three dimensions, as well as an introduction to vibrations of mechanical systems and aims to equip students with the analytical skills required to solve engineering dynamics problems by applying basic principles and methods of mechanics. Upon successful completion of the course the student will be able to:
– Analyse the kinematics of particles and rigid bodies.
– Draw free-body diagram for a particle or a rigid body in motion.
– Determine the dynamic response of the system to applied loadings, using Newton’s laws.
– Apply the principle of work-energy and the principle of impulse-momentum to solve particle, system of particles and rigid-body kinetic problems.
– Solve impact problems using the principle of impulse and momentum and the coefficient of restitution.
– Determine mass moments and products of inertia of a rigid body for specified axes.
– Define the inertia tensor, principal coordinates and the principal moments of inertia.
– Solve three-dimensional rigid body kinetics problems.
– Derive mathematical models for simple vibration systems.
– Define free vibration and solve problems of simple harmonic motion.
– Explain and solve problems of forced vibrations.

Γενικές Ικανότητες
Λαμβάνοντας υπόψη τις γενικές ικανότητες που πρέπει να έχει αποκτήσει ο πτυχιούχος (όπως αυτές αναγράφονται στο Παράρτημα Διπλώματος και παρατίθενται ακολούθως) σε ποια / ποιες από αυτές αποσκοπεί το μάθημα;.
Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών με τη χρήση και των απαραίτητων τεχνολογιών - Προσαρμογή σε νέες καταστάσεις - Λήψη αποφάσεων - Αυτόνομη εργασία - Ομαδική εργασία - Εργασία σε διεθνές περιβάλλον - Εργασία σε διεπιστημονικό περιβάλλον - Παράγωγή νέων ερευνητικών ιδεών Σχεδιασμός και διαχείριση έργων - Σεβασμός στη διαφορετικότητα και στην πολυπολιτισμικότητα - Σεβασμός στο φυσικό περιβάλλον - Επίδειξη κοινωνικής, επαγγελματικής και ηθικής υπευθυνότητας και ευαισθησίας σε θέματα φύλου - Άσκηση κριτικής και αυτοκριτικής - Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης

Search, Analysis and synthesis of data and information, independent work, Using corresponding technologies.

3. ΠΕΡΙΕΧΟΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

– Kinematics of Particles: Position vector velocity and acceleration, Rectilinear motion, Curvilinear motion, Derivative of vector function, Rectangular components of velocity and acceleration, Normal and tangential coordinates, Polar coordinates, Relative motion.
– Kinetics of Particles: Newton’s second law of motion, Equations of motion, Kinetic energy of a particle, Conservative Forces and potential energy, Principle of work and energy, Conservation of energy, Linear and angular momentum, Linear and angular impulse, Principle of impulse and momentum, Conservation of momentum.
– Dynamics of Particle Systems: A Motion of the center mass of a system of particles, Principle of work and energy for a system of particles, principles, Principle of linear impulse and momentum for a system of particles, Conservation of energy and momentum, Impact, Relative motion.
– Mass Moment and Product of Inertia: Mass Moment of inertia by integration, Mass products of inertia, Parallel-Axis theorems, Moment of inertia about an arbitrary axis, Inertia tensor Principal moment and principal axes of inertia.
– Planar Kinematics of Rigid Bodies: Planar rigid-body motion, Translation, Rotation about a fixed axis, General plane motion, Absolute and relative plane motion analysis, Instantaneous center of rotation in plane motion, Motion relative to a rotating reference frame.
– Planar Kinetics of Rigid Bodies: Equations of motion for a rigid body, Kinetic energy of a rigid body, Work-Energy principle and conservation of mechanical energy, Linear and angular momentum in plane motion, Principle of impulse and momentum for the plane motion of a rigid body, Conservation of angular momentum, Rigid body impact.
– Rigid-Body Dynamics in Three Dimensions: Angular momentum and kinetic energy of a rigid body in three dimensions, Euler’s equations of motion, Rotation about a fixed point, Fixed-axis rotation, General motion, Gyroscopic motion.
– Mechanical Vibrations: Free vibrations of particles, Undamped and damped systems, Equation of motion, Natural frequency, Damping ratio, Forced vibration of particles, Resonance, Vibration of rigid bodies, Energy methods.

4. ΔΙΔΑΚΤΙΚΕΣ και ΜΑΘΗΣΙΑΚΕΣ ΜΕΘΟΔΟΙ - ΑΞΙΟΛΟΓΗΣΗ

ΤΡΟΠΟΣ ΠΑΡΑΔΟΣΗΣ
Πρόσωπο με πρόσωπο, Εξ αποστάσεως εκπαίδευση κ.λπ.

Lectures, Exercises, Online guidance, Projected Presentations, E-mail communication, Online Synchronous and Asynchronous Teaching Platform (moodle).

ΧΡΗΣΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ
Χρήση Τ.Π.Ε. στη Διδασκαλία, στην Εργαστηριακή Εκπαίδευση, στην Επικοινωνία με τους φοιτητές
ΟΡΓΑΝΩΣΗ ΔΙΔΑΣΚΑΛΙΑΣ
Περιγράφονται αναλυτικά ο τρόπος και μέθοδοι διδασκαλίας. Διαλέξεις, Σεμινάρια, Εργαστηριακή Άσκηση, Άσκηση Πεδίου, Μελέτη & ανάλυση βιβλιογραφίας, Φροντιστήριο, Πρακτική (Τοποθέτηση), Κλινική Άσκηση, Καλλιτεχνικό Εργαστήριο, Διαδραστική διδασκαλία, Εκπαιδευτικές επισκέψεις, Εκπόνηση μελέτης (project), Συγγραφή εργασίας / εργασιών, Καλλιτεχνική δημιουργία, κ.λπ. Αναγράφονται οι ώρες μελέτης του φοιτητή για κάθε μαθησιακή δραστηριότητα καθώς και οι ώρες μη καθοδηγούμενης μελέτης ώστε ο συνολικός φόρτος εργασίας σε επίπεδο εξαμήνου να αντιστοιχεί στα standards του ECTS
ΑΞΙΟΛΟΓΗΣΗ ΦΟΙΤΗΤΩΝ
Περιγραφή της διαδικασίας αξιολόγησης Γλώσσα Αξιολόγησης, Μέθοδοι αξιολόγησης, Διαμορφωτική ή Συμπερασματική, Δοκιμασία Πολλαπλής Επιλογής, Ερωτήσεις Σύντομης Απάντησης, Ερωτήσεις Ανάπτυξης Δοκιμίων, Επίλυση Προβλημάτων, Γραπτή Εργασία, Έκθεση / Αναφορά, Προφορική Εξέταση, Δημόσια Παρουσίαση, Εργαστηριακή Εργασία, Κλινική Εξέταση Ασθενούς, Καλλιτεχνική Ερμηνεία, Άλλη / Άλλες. Αναφέρονται ρητά προσδιορισμένα κριτήρια αξιολόγησης και εάν και που είναι προσβάσιμα από τους φοιτητές.

Assessment Language: Greek.
Final Written Problem-Solving Exam.

5. ΣΥΝΙΣΤΩΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

Συγγράμματα

J. L. Meriam, L. G. Kraige, “Engineering Mechanics: Dynamics”, 7th Edition, John Wiley & Sons Inc., 2012.
R. C. Hibbeler, “Engineering Mechanics: Dynamics”, 14th Edition, Pearson Prentice Hall, 2015.
Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian P. Self, “Vector Mechanics for Engineers: Dynamics”, 11th Edition, McGraw-Hill, 2018.